МИНИСТЕРСТВО ПРОСВЕЩЕНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Министерство общего и профессионального образования Ростовской области

МУ "Отдел образования Администрация Мясниковского района" мьоу сош №3

PACCMOTPEHO

Руководитель ШМО

СОГЛАСОВАНО Руководитель МС

от «28» августа 2025 г.

УТВЕРЖДЕНО Директор

Бугаян С.А.

Мовсесян Р.Л.

Протокол №1 от «27» августа 2025 г.

Тухикян О.Г. Протокол №1

Приказ № 222

от «29» августа 2025 г.

Рабочая программа основного общего образования для слабовидящих обучающихся вариант 4.1 «Физика»

(8 класс)

I. Пояснительная записка

Рабочая программа по физике (базовый уровень) на уровне основного общего образования составлена на основе требований к результатам освоения программы основного общего образования Федерального государственного образовательного стандарта основного общего образования, утвержденного приказом Министерства просвещения Российской Федерации от 31 05 2021 г № 287 (с дополнениями и изменениями), федеральной образовательной программы основного общего образования, утвержденной приказом Министерства просвещения Российской Федерации от 18.05.2023 № 370, приказом Министерства просвещения Российской Федерации от 09.10. 2024 г. № 704 «О внесении изменений в некоторые приказы Министерства просвещения Российской Федерации, касающиеся федеральных образовательных программ начального общего образования, основного общего образования и среднего общего образования», а также ориентирована на целевые приоритеты, сформулированные в федеральной рабочей программе воспитания.

Программа по физике на уровне основного общего образования составлена на основе положений и требований к результатам освоения на базовом уровне основной образовательной программы, представленных в ФГОС ООО, а также с учетом федеральной рабочей программы воспитания и концепции преподавания учебного предмета «Физика».

Содержание программы по физике направлено на формирование естественно-научной грамотности обучающихся и организацию изучения физики на деятельностной основе. В программе по физике учитываются возможности учебного предмета в реализации требований ФГОС ООО к планируемым личностным и метапредметным результатам обучения, a также межпредметные естественно-научных учебных предметов на уровне основного общего образования.

Программа по физике устанавливает распределение учебного материала по годам обучения (по классам), предлагает примерную последовательность изучения тем, основанную на логике развития предметного содержания и учете возрастных особенностей обучающихся.

Программа по физике разработана с целью оказания методической помощи учителю в создании рабочей программы по учебному предмету.

Физика является системообразующим для естественно-научных учебных предметов, поскольку физические законы лежат в основе процессов и явлений, изучаемых химией, биологией, астрономией и физической географией, вносит вклад в естественно-научную картину мира, предоставляет наиболее ясные образцы применения научного метода познания, то есть способа получения достоверных знаний о мире.

Одна из главных задач физического образования в структуре общего образования состоит в формировании естественно-научной грамотности и интереса к науке у обучающихся.

Изучение физики на базовом уровне предполагает овладение следующими компетентностями, характеризующими естественно-научную грамотность: научно объяснять явления, оценивать и понимать особенности научного исследования;

интерпретировать данные и использовать научные доказательства для получения выводов».

Цели изучения физики на уровне основного общего образования определены в концепции преподавания учебного предмета «Физика» в образовательных организациях Российской Федерации, реализующих основные общеобразовательные программы.

Цели изучения физики: приобретение интереса и стремления обучающихся к научному изучению природы, развитие их интеллектуальных и творческих способностей; развитие представлений о научном методе познания и формирование исследовательского отношения к окружающим явлениям; формирование научного мировоззрения как результата изучения основ строения материи и фундаментальных законов физики;

формирование представлений о роли физики для развития других естественных наук, техники и технологий;

развитие представлений о возможных сферах будущей профессиональной деятельности, связанной с физикой, подготовка к дальнейшему обучению в этом направлении.

Достижение этих целей программы по физике на уровне основного общего образования обеспечивается решением следующих задач: приобретение знаний о дискретном строении вещества, о механических, тепловых, электрических, магнитных и квантовых явлениях; приобретение умений описывать и объяснять физические явления с использованием полученных знаний;

освоение методов решения простейших расчетных задач с использованием физических моделей, творческих и практико-ориентированных задач;

развитие умений наблюдать природные явления и выполнять опыты, лабораторные работы и экспериментальные исследования с использованием измерительных приборов; освоение приемов работы с информацией физического содержания, включая информацию о современных достижениях физики, анализ и критическое оценивание информации; знакомство со сферами профессиональной деятельности, связанными с физикой, и современными технологиями, основанными на достижениях физической науки.

Общее число часов, рекомендованных для изучения физики на базовом уровне, — 238 часов: в 7 классе — 68 часов (2 часа в неделю), в 8 классе — 68 часов (2 часа в неделю), в 9 классе — 102 часа (3 часа в неделю). В соответствии с индивидуальным учебным планом рабочая программа рассчитана на 34 учебные недели и составляет 34 часа (1 час в неделю).

Предлагаемый в программе по физике перечень лабораторных работ и опытов является рекомедовательным, учитель делает выбор при проведении лабораторных работ и опытов с учетом индивидуальных особенностей обучающихся, списка экспериментальных заданий, предлагаемых в рамках основного государственного экзамена по физике.

II. Содержание обучения

Тепловые явления.

Основные положения молекулярно-кинетической теории строения вещества. Масса и размеры атомов и молекул. Опыты, подтверждающие основные положения молекулярно-кинетической теории.

Модели твердого, жидкого и газообразного состояний вещества. Кристаллические и аморфные тела. Объяснение свойств газов, жидкостей и твердых тел на основе положений молекулярно-кинетической теории. Смачивание и капиллярные явления. Тепловое расширение и сжатие.

Температура. Связь температуры со скоростью теплового движения частиц. Внутренняя энергия. Способы изменения внутренней энергии: теплопередача и совершение работы. Виды теплопередачи: теплопроводность, конвекция, излучение.

Количество теплоты. Удельная теплоемкость вещества. Теплообмен и тепловое равновесие. Уравнение теплового баланса. Плавление и отвердевание кристаллических веществ. Удельная теплота плавления. Парообразование и конденсация. Испарение. Кипение. Удельная теплота парообразования. Зависимость температуры кипения от атмосферного давления.

Влажность воздуха.

Энергия топлива. Удельная теплота сгорания.

Принципы работы тепловых двигателей КПД теплового двигателя. Тепловые двигатели и защита окружающей среды.

Закон сохранения и превращения энергии в тепловых процессах.

Демонстрации.

Наблюдение броуновского движения.

Наблюдение диффузии.

Наблюдение явлений смачивания и капиллярных явлений.

Наблюдение теплового расширения тел.

Изменение давления газа при изменении объема и нагревании или охлаждении.

Правила измерения температуры.

Виды теплопередачи.

Охлаждение при совершении работы.

Нагревание при совершении работы внешними силами.

Сравнение теплоемкостей различных веществ.

Наблюдение кипения.

Наблюдение постоянства температуры при плавлении.

Модели тепловых двигателей.

Лабораторные работы и опыты.

Опыты по обнаружению действия сил молекулярного притяжения.

Опыты по выращиванию кристаллов поваренной соли или сахара.

Опыты по наблюдению теплового расширения газов, жидкостей и твердых тел.

Определение давления воздуха в баллоне шприца.

Опыты, демонстрирующие зависимость давления воздуха от его объема и нагревания или охлаждения.

Проверка гипотезы линейной зависимости длины столбика жидкости в термометрической трубке от температуры.

Наблюдение изменения внутренней энергии тела в результате теплопередачи и работы внешних сил.

Исследование явления теплообмена при смешивании холодной и горячей воды.

Определение количества теплоты, полученного водой при теплообмене с нагретым металлическим цилиндром.

Определение удельной теплоемкости вещества.

Исследование процесса испарения.

Определение относительной влажности воздуха.

Определение удельной теплоты плавления льда.

Электрические и магнитные явления.

Электризация тел. Два рода электрических зарядов. Взаимодействие заряженных тел. Закон Кулона (зависимость силы взаимодействия заряженных тел от величины зарядов и расстояния между телами).

Электрическое поле. Напряженность электрического поля. Принцип суперпозиции электрических полей (на качественном уровне).

Носители электрических зарядов. Элементарный электрический заряд. Строение атома. Проводники и диэлектрики. Закон сохранения электрического заряда.

Электрический ток. Условия существования электрического тока. Источники постоянного тока. Действия электрического тока (тепловое, химическое, магнитное). Электрический ток в жидкостях и газах.

Электрическая цепь. Сила тока. Электрическое напряжение. Сопротивление проводника. Удельное сопротивление вещества. Закон Ома для участка цепи. Последовательное и параллельное соединение проводников.

Работа и мощность электрического тока. Закон Джоуля—Ленца. Электрические цепи и потребители электрической энергии в быту. Короткое замыкание.

Постоянные магниты. Взаимодействие постоянных магнитов. Магнитное поле. Магнитное поле Земли и его значение для жизни на Земле. Опыт Эрстеда. Магнитное поле электрического тока. Применение электромагнитов в технике. Действие магнитного поля на проводник с током. Электродвигатель постоянного тока.

Использование электродвигателей в технических устройствах и на транспорте.

Опыты Фарадея. Явление электромагнитной индукции.

Правило Ленца. Электрогенератор. Способы получения электрической энергии. Электростанции на возобновляемых источниках энергии.

Демонстрации.

Электризация тел.

Два рода электрических зарядов и взаимодействие заряженных тел.

Устройство и действие электроскопа.

Электростатическая индукция.

Закон сохранения электрических зарядов.

Проводники и диэлектрики.

Моделирование силовых линий электрического поля.

Источники постоянного тока.

Действия электрического тока.

Электрический ток в жидкости.

Газовый разряд.

Измерение силы тока амперметром.

Измерение электрического напряжения вольтметром.

Реостат и магазин сопротивлений.

Взаимодействие постоянных магнитов.

Моделирование невозможности разделения полюсов магнита.

Моделирование магнитных полей постоянных магнитов.

Опыт Эрстеда.

Магнитное поле тока. Электромагнит.

Действие магнитного поля на проводник с током.

Электродвигатель постоянного тока.

Исследование явления электромагнитной индукции.

Опыты Фарадея.

Зависимость направления индукционного тока от условий его возникновения.

Электрогенератор постоянного тока.

Лабораторные работы и опыты.

Опыты по наблюдению электризации тел индукцией и при соприкосновении.

Исследование действия электрического поля на проводники и диэлектрики.

Сборка и проверка работы электрической цепи постоянного тока.

Измерение и регулирование силы тока.

Измерение и регулирование напряжения.

Исследование зависимости силы тока, идущего через резистор, от сопротивления резистора и напряжения на резисторе.

Опыты, демонстрирующие зависимость электрического сопротивления проводника от его длины, площади поперечного сечения и материала.

Проверка правила сложения напряжений при последовательном соединении двух резисторов.

Проверка правила для силы тока при параллельном соединении резисторов.

Определение работы электрического тока, идущего через резистор.

Определение мощности электрического тока, выделяемой на резисторе.

Исследование зависимости силы тока, идущего через лампочку, от напряжения на ней.

Определение КПД нагревателя.

Исследование магнитного взаимодействия постоянных магнитов.

Изучение магнитного поля постоянных магнитов при их объединении и разделении.

Исследование действия электрического тока на магнитную стрелку.

Опыты, демонстрирующие зависимость силы взаимодействия катушки с током и магнита от силы тока и направления тока в катушке.

Изучение действия магнитного поля на проводник с током.

Конструирование и изучение работы электродвигателя.

Измерение КПД электродвигательной установки.

Опыты по исследованию явления электромагнитной индукции: исследование изменений значения и направления индукционного тока.

III. Планируемые результаты освоения физики (базовый уровень) на уровне основного общего образования.

Изучение физики на уровне основного общего образования направлено на достижение **личностных**, **метапредметных и предметных образовательных результатов**. В результате изучения физики на уровне основного общего образования у обучающегося будут сформированы следующие **личностные результаты** в части: 1) патриотического воспитания:

проявление интереса к истории и современному состоянию российской физической науки; ценностное отношение к достижениям российских ученых-физиков;

2) гражданского и духовно-нравственного воспитания:

готовность к активному участию в обсуждении общественно-значимых и этических проблем, связанных с практическим применением достижений физики; осознание важности морально-этических принципов в деятельности ученого; 3) эстетического воспитания: восприятие эстетических качеств физической науки: еè гармоничного построения, строгости, точности, лаконичности; 4) ценности научного познания: осознание ценности физической науки как мощного инструмента познания мира, основы развития технологий, важнейшей составляющей культуры; развитие научной любознательности, интереса к исследовательской деятельности; 5) формирования культуры здоровья и эмоционального благополучия:

осознание ценности безопасного образа жизни в современном технологическом мире, важности правил безопасного поведения на транспорте, на дорогах, с электрическим и тепловым оборудованием в домашних условиях;

сформированность навыка рефлексии, признание своего права на ошибку и такого же права у другого человека;

- 6) трудового воспитания:
- 7) активное участие в решении практических задач (в рамках семьи, образовательной организации, населенного пункта, родного края) технологической и социальной направленности, требующих в том числе и физических знаний; интерес к практическому изучению профессий, связанных с физикой;
- 8) экологического воспитания:

ориентация на применение физических знаний для решения задач в области окружающей среды, планирования поступков и оценки их возможных последствий для окружающей среды; осознание глобального характера экологических проблем и путей их решения; 9) адаптации к изменяющимся условиям социальной и природной среды: потребность во взаимодействии при выполнении исследований и проектов физической направленности, открытость опыту и знаниям других; повышение уровня своей компетентности через практическую деятельность;

потребность в формировании новых знаний, в том числе формулировать идеи, понятия, гипотезы о физических объектах и явлениях; осознание дефицитов собственных знаний и компетентностей в области физики; планирование своего развития в приобретении новых физических знаний;

стремление анализировать и выявлять взаимосвязи природы, общества и экономики, в том числе с использованием физических знаний;

оценка своих действий с учетом влияния на окружающую среду, возможных глобальных последствий.

В результате изучения физики на уровне основного общего образования у обучающегося будут сформированы *метапредметные результаты*, включающие познавательные универсальные учебные действия, коммуникативные универсальные учебные действия, регулятивные универсальные учебные действия.

Овладение универсальными учебными познавательными действиями:

1) базовые логические действия:

выявлять и характеризовать существенные признаки объектов (явлений); устанавливать существенный признак классификации, основания для обобщения и сравнения;

выявлять закономерности и противоречия в рассматриваемых фактах, данных и наблюдениях, относящихся к физическим явлениям;

выявлять причинно-следственные связи при изучении физических явлений и процессов, проводить выводы с использованием дедуктивных и индуктивных умозаключений, выдвигать гипотезы о взаимосвязях физических величин;

самостоятельно выбирать способ решения учебной физической задачи (сравнение нескольких вариантов решения, выбор наиболее подходящего с учетом самостоятельно выделенных критериев).

2) базовые исследовательские действия: использовать вопросы как исследовательский инструмент познания; проводить по самостоятельно составленному плану опыт, несложный физический эксперимент, небольшое исследование физического явления;

оценивать на применимость и достоверность информацию, полученную в ходе исследования или эксперимента; самостоятельно формулировать обобщения и выводы по результатам проведенного наблюдения, опыта, исследования;

прогнозировать возможное дальнейшее развитие физических процессов, а также выдвигать предположения об их развитии в новых условиях и контекстах.

3) работа с информацией:

применять различные методы, инструменты и запросы при поиске и отборе информации или данных с учетом предложенной учебной физической задачи;

анализировать, систематизировать и интерпретировать информацию различных видов и форм представления;

самостоятельно выбирать оптимальную форму представления информации и иллюстрировать решаемые задачи несложными схемами, диаграммами, иной графикой и их комбинациями.

Овладение универсальными учебными коммуникативными действиями:

- 1) общение:
- в ходе обсуждения учебного материала, результатов лабораторных работ и проектов задавать вопросы по существу обсуждаемой темы и высказывать идеи, нацеленные на решение задачи и поддержание благожелательности общения;
- сопоставлять свои суждения с суждениями других участников диалога, обнаруживать различие и сходство позиций; выражать свою точку зрения в устных и письменных текстах; публично представлять результаты выполненного физического опыта (эксперимента, исследования, проекта).
 - 2) совместная деятельность (сотрудничество): понимать и использовать преимущества командной и индивидуальной работы при решении конкретной физической проблемы;

принимать цели совместной деятельности, организовывать действия по еè достижению: распределять роли, обсуждать процессы и результаты совместной работы, обобщать мнения нескольких человек; выполнять свою часть работы, достигая качественного результата по своему направлению и координируя свои действия с другими членами

команды; оценивать качество своего вклада в общий продукт по критериям, самостоятельно сформулированным участниками взаимодействия.

Овладение универсальными учебными регулятивными действиями:

1) самоорганизация: выявлять проблемы в жизненных и учебных ситуациях, требующих для решения физических знаний; ориентироваться в различных подходах принятия решений (индивидуальное, принятие решения в группе, принятие решений группой);

самостоятельно составлять алгоритм решения физической задачи или плана исследования с учетом имеющихся ресурсов и собственных возможностей, аргументировать предлагаемые варианты решений; проводить выбор и брать ответственность за решение.

- 2) самоконтроль:
- давать оценку ситуации и предлагать план ее изменения;
- объяснять причины достижения (недостижения) результатов деятельности, давать оценку приобретенному опыту;
- вносить коррективы в деятельность (в том числе в ход выполнения физического исследования или проекта) на основе новых обстоятельств, изменившихся ситуаций, установленных ошибок, возникших трудностей; оценивать соответствие результата цели и условиям.
 - 3) эмоциональный интеллект: ставить себя на место другого человека в ходе спора или дискуссии на научную тему, понимать мотивы, намерения и логику другого.
 - 4) принятие себя и других: признавать свое право на ошибку при решении физических задач или в утверждениях на научные темы и такое же право другого.

Предметные результаты освоения программы по физике (базовый уровень).

Предметные результаты на базовом уровне должны отражать сформированность у обучающихся умений:

использовать понятия: масса и размеры молекул, тепловое движение атомов и молекул, агрегатные состояния вещества, кристаллические и аморфные тела, насыщенный и ненасыщенный пар, влажность воздуха, температура, внутренняя энергия, тепловой двигатель, элементарный электрический заряд, электрическое поле, проводники и диэлектрики, постоянный электрический ток, магнитное поле;

различать явления (тепловое расширение и сжатие, теплопередача, тепловое равновесие, смачивание, капиллярные явления, испарение, конденсация, плавление, кристаллизация (отвердевание), кипение, теплопередача (теплопроводность, конвекция, излучение), электризация тел, взаимодействие зарядов, действия электрического тока, короткое замыкание, взаимодействие магнитов, действие магнитного поля на проводник с током, электромагнитная индукция) по описанию их характерных свойств и на основе опытов, демонстрирующих данное физическое явление;

распознавать проявление изученных физических явлений в окружающем мире, в том числе физические явления в природе: поверхностное натяжение и капиллярные явления в природе, кристаллы в природе, излучение Солнца, замерзание водоемов, морские бризы, образование росы, тумана, инея, снега, электрические явления в атмосфере, электричество живых организмов, магнитное поле Земли, дрейф полюсов, роль магнитного поля для жизни на Земле, полярное сияние, при этом переводить практическую задачу в учебную, выделять существенные свойства (признаки) физических явлений;

описывать изученные свойства тел и физические явления, используя физические величины (температура, внутренняя энергия, количество теплоты, удельная теплоёмкость вещества, удельная теплота плавления, удельная теплота парообразования, удельная теплота сгорания топлива, коэффициент полезного действия тепловой машины, относительная влажность воздуха, электрический заряд, сила тока, электрическое напряжение, сопротивление проводника, удельное сопротивление вещества, работа и мощность электрического тока), при описании правильно трактовать физический смысл используемых величин, обозначения и единицы физических величин, находить формулы,

связывающие данную физическую величину с другими величинами, строить графики изученных зависимостей физических величин;

характеризовать свойства тел, физические явления и процессы, используя основные положения молекулярно-кинетической теории строения вещества, принцип суперпозиции полей (на качественном уровне), закон сохранения заряда, закон Ома для участка цепи, закон Джоуля-Ленца, закон сохранения энергии, при этом уметь формулировать закон и записывать его математическое выражение;

объяснять физические процессы и свойства тел, в том числе и в контексте ситуаций практико-ориентированного характера: выявлять причинно-следственные связи, строить объяснение из 1–2 логических шагов с использованием 1–2 изученных свойства физических явлений, физических законов или закономерностей;

решать расчётные задачи в 2–3 действия, используя законы и формулы, связывающие физические величины: на основе анализа условия задачи записывать краткое условие, выявлять недостаток данных для решения задачи, выбирать законы и формулы, необходимые для еè решения, проводить расчёты и сравнивать полученное значение физической величины с известными данными;

распознавать проблемы, которые можно решить при помощи физических методов, используя описание исследования, выделять проверяемое предположение, оценивать правильность порядка проведения исследования, проводить выводы;

проводить опыты по наблюдению физических явлений или физических свойств тел (капиллярные явления, зависимость давления воздуха от его объема, температуры, скорости процесса остывания и нагревания при излучении от цвета излучающей (поглощающей) поверхности, скорость испарения воды от температуры жидкости и площади ее поверхности, электризация тел и взаимодействие электрических зарядов, взаимодействие постоянных магнитов, визуализация магнитных полей постоянных магнитов, действия магнитного поля на проводник с током, свойства электромагнита, свойства электродвигателя постоянного тока): формулировать проверяемые предположения, собирать установку из предложенного оборудования, описывать ход опыта и формулировать выводы;

выполнять прямые измерения температуры, относительной влажности воздуха, силы тока, напряжения с использованием аналоговых приборов и датчиков физических величин, сравнивать результаты измерений с учетом заданной абсолютной погрешности;

проводить исследование зависимости одной физической величины от другой с использованием прямых измерений (зависимость сопротивления проводника от его длины, площади поперечного сечения и удельного сопротивления вещества проводника, силы тока, идущего через проводник, от напряжения на проводнике, исследование последовательного и параллельного соединений проводников): планировать исследование, собирать установку и выполнять измерения, следуя предложенному плану, фиксировать результаты полученной зависимости в виде таблиц и графиков, проводить выводы по результатам исследования;

проводить косвенные измерения физических величин (удельная теплоемкость вещества, сопротивление проводника, работа и мощность электрического тока): планировать измерения, собирать экспериментальную установку, следуя предложенной инструкции, и вычислять значение величины; соблюдать правила техники безопасности при работе с лабораторным оборудованием;

характеризовать принципы действия изученных приборов и технических устройств с использованием их описания (в том числе: система отопления домов, гигрометр, паровая турбина, амперметр, вольтметр, счѐтчик электрической энергии, электроосветительные приборы, нагревательные электроприборы (примеры), электрические предохранители, электромагнит, электродвигатель постоянного тока), используя знания о свойствах физических явлений и необходимые физические закономерности;

распознавать простые технические устройства и измерительные приборы по схемам и схематичным рисункам (жидкостный термометр, термос, психрометр, гигрометр, двигатель внутреннего сгорания, электроскоп, реостат), составлять схемы электрических цепей с последовательным и параллельным соединением элементов, различая условные обозначения элементов электрических цепей;

приводить примеры (находить информацию о примерах) практического использования физических знаний в повседневной жизни для обеспечения безопасности при обращении с приборами и техническими устройствами, сохранения здоровья и соблюдения норм экологического поведения в окружающей среде;

осуществлять поиск информации физического содержания в Интернете, на основе имеющихся знаний и путем сравнения дополнительных источников выделять информацию, которая является противоречивой или может быть недостоверной;

использовать при выполнении учебных заданий научно-популярную литературу физического содержания, справочные материалы, ресурсы сети Интернет, владеть приемами конспектирования текста, преобразования информации из одной знаковой системы в другую;

создавать собственные письменные и краткие устные сообщения, обобщая информацию из нескольких источников, в том числе публично представлять результаты проектной или исследовательской деятельности, при этом грамотно использовать изученный понятийный аппарат курса физики, сопровождать выступление презентацией;

при выполнении учебных проектов и исследований физических процессов распределять обязанности в группе в соответствии с поставленными задачами, следить за выполнением плана действий и корректировать его, оценивать собственный вклад в деятельность группы, выстраивать коммуникативное взаимодействие, проявляя готовность разрешать конфликты.

IV. Тематическое планирование

№ п/п		Количество	часов	Электронные			
	Наименование разделов и тем программы	Всего	Контрольные работы	Практические работы	(цифровые) образовательные ресурсы		
Раздел 1. Тепловые явления							
1.1	Строение и свойства вещества	7			Библиотека ЦОК https://m.edsoo.ru/7f4181ce		
1.2	Тепловые процессы	21	1	3	Библиотека ЦОК https://m.edsoo.ru/7f4181ce		
Раздел 2. Электрические и магнитные явления							
2.1	Электрические заряды. Заряженные тела и их взаимодействие	6			Библиотека ЦОК https://m.edsoo.ru/7f4181ce		
2.2	Постоянный электрический ток	21	1	5.5	Библиотека ЦОК https://m.edsoo.ru/7f4181ce		
2.3	Магнитные явления	6		1.5	Библиотека ЦОК https://m.edsoo.ru/7f4181ce		
2.4	Электромагнитная индукция	4	1		Библиотека ЦОК https://m.edsoo.ru/7f4181ce		
Резервное время		3					
ОБЩЕЕ КОЛИЧЕСТВО ЧАСОВ ПО ПРОГРАММЕ		68	3	10			

Поурочное планирование по физике, 8 «А» класс, учитель Шагинян М.А.

№ п/п	Тема урока		Количество часов		
		Всего	Контр. работы	Практ. работы	
1	Основные положения молекулярно-кинетической теории и их опытные подтверждения	1			3.09
2	Масса и размер атомов и молекул	1			11.09
3	Модели твёрдого, жидкого и газообразного состояний вещества.	1			17.09
4	Объяснение свойств твёрдого, жидкого и газообразного состояний вещества на основе положений молекулярно-кинетической теории	1			24.09
5	Кристаллические и аморфные тела	1			1.09
6	Смачивание и капиллярность. Поверхностное натяжение	1			8.10
7	Тепловое расширение и сжатие	1			15.10
8	Температура. Связь температуры со скоростью теплового движения частиц	1			22.10
9	Внутренняя энергия. Способы изменения внутренней энергии	1			5.11
10	Виды теплопередачи	1			12.11
11	Урок-конференция "Практическое использование тепловых свойств веществ и материалов в целях энергосбережения"	1			19.11
12	Количество теплоты. Удельная теплоемкость	1			26.11
13	Уравнение теплового баланса. Теплообмен и тепловое равновесие	1			3.12
14	Лабораторная работа "Исследование явления теплообмена при смешивании холодной и горячей воды"	1		1	10.12
15	Расчет количества теплоты, необходимого для нагревания тела и выделяемого им при охлаждении	1			17.12

16	Лабораторная работа "Определение удельной теплоемкости вещества"	1		1	24.12
17	Энергия топлива. Удельная теплота сгорания	1			14.01
18	Плавление и отвердевание кристаллических тел. Удельная теплота плавления	1			21.01
19	Лабораторная работа "Определение удельной теплоты плавления льда"	1		1	28.01
20	Парообразование и конденсация. Испарение	1			04.02
21	Кипение. Удельная теплота парообразования и конденсации. Зависимость	1			11.02
	температуры кипения от атмосферного давления				
22	Влажность воздуха. Лабораторная работа "Определение относительной	1		1	18.02
	влажности воздуха"				
23	Решение задач на определение влажности воздуха	1			25.02
24	Принципы работы тепловых двигателей. Паровая турбина. Двигатель	1			4.03
	внутреннего сгорания				
25	КПД теплового двигателя. Тепловые двигатели и защита окружающей среды	1			11.03
26	Закон сохранения и превращения энергии в тепловых процессах	1			18.03
27	Электризация тел. Два рода электрических зарядов	1			25.03
28	Урок-исследование "Электризация тел индукцией и при соприкосновении"	1			08.04
29	Взаимодействие заряженных тел. Закон Кулона	1			15.04
30	Электрическое поле. Напряженность электрического поля. Принцип	1			22.04
	суперпозиции электрических полей				
31	Носители электрических зарядов. Элементарный заряд. Строение атома	1			29.04
32	Проводники и диэлектрики. Закон сохранения электрического заряда	1			06.05
33	Электрический ток, условия его существования. Источники электрического	1			13.05
	тока				
34	Действия электрического тока	1			20.05
ОБЩЕ	ОБЩЕЕ КОЛИЧЕСТВО ЧАСОВ ПО ПРОГРАММЕ		0	4	