МИНИСТЕРСТВО ПРОСВЕЩЕНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Министерство общего и профессионального образования Ростовской области

МУ "Отдел образования Администрация Мясниковского района" МБОУ СОШ №3

РАССМОТРЕНО Руководитель, ШМО

Мовсесян Р.Л.

Протокол №1 от «27» августа 2025 г. СОГЛАСОВАНО Руководитель МС

Тухикян О.Г.

Протокол №1 от «28» августа 2025 г. УТВЕРЖДЕНО Директор

Бугаян С.А.

Приказ № 222 от «29» августа 2025 г.

Рабочая программа основного общего образования для слабовидящих обучающихся вариант 4.1 «Химия» (8 класс)

Чалтырь 2025

І. ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

Программа по химии на уровне основного общего образования составлена на основе требований к результатам освоения основной образовательной программы основного общего образования, представленных в ФГОС ООО, а также на основе федеральной рабочей программы воспитания и с учётом концепции преподавания учебного предмета «Химия» в образовательных организациях Российской Федерации.

Программа по химии даёт представление о целях, общей стратегии обучения, воспитания и развития обучающихся средствами учебного предмета, устанавливает обязательное предметное содержание, предусматривает распределение его по классам и структурирование по разделам и темам программы по химии, определяет количественные и качественные характеристики содержания, рекомендуемую последовательность изучения химии с учётом межпредметных и внутрипредметных связей, логики учебного процесса, возрастных особенностей обучающихся, определяет возможности предмета для реализации требований к результатам освоения основной образовательной программы на уровне основного общего образования, а также требований к результатам обучения химии на уровне целей изучения предмета и основных видов учебно-познавательной деятельности обучающегося по освоению учебного содержания.

Знание химии служит основой для формирования мировоззрения обучающегося, его представлений о материальном единстве мира, важную роль играют формируемые химией представления о взаимопревращениях энергии и об эволюции веществ в природе, о путях решения глобальных проблем устойчивого развития человечества — сырьевой, энергетической, пищевой и экологической безопасности, проблем здравоохранения.

Изучение химии:

способствует реализации возможностей для саморазвития и формирования культуры личности, её общей и функциональной грамотности; вносит вклад в формирование мышления и творческих способностей обучающихся, навыков их самостоятельной учебной деятельности, экспериментальных и исследовательских умений, необходимых как в повседневной жизни, так и в профессиональной деятельности;

знакомит со спецификой научного мышления, закладывает основы целостного взгляда на единство природы и человека, является ответственным этапом в формировании естественно -научной грамотности обучающихся;

способствует формированию ценностного отношения к естественно- научным знаниям, к природе, к человеку, вносит свой вклад в экологическое образование обучающихся.

Данные направления в обучении химии обеспечиваются спецификой содержания учебного предмета, который является педагогически адаптированным отражением базовой науки химии на определённом этапе её развития.

Курс химии на уровне основного общего образования ориентирован на освоение обучающимися системы первоначальных понятий химии, основ неорганической химии и некоторых отдельных значимых понятий органической химии.

Структура содержания программы по химии сформирована на основе системного подхода к её изучению. Содержание складывается из системы понятий о химическом элементе и веществе и системы понятий о химической реакции. Обе эти системы структурно организованы по принципу последовательного развития знаний на основе теоретических представлений разного уровня:

атомно -молекулярного учения как основы всего естествознания;

Периодического закона Д. И. Менделеева как основного закона химии;

учения о строении атома и химической связи;

представлений об электролитической диссоциации веществ в растворах.

Теоретические знания рассматриваются на основе эмпирически полученных и осмысленных фактов, развиваются последовательно от одного уровня к другому, выполняя функции объяснения и прогнозирования свойств, строения и возможностей практического применения и получения изучаемых веществ.

Освоение программы по химии способствует формированию представления о химической составляющей научной картины мира в логике её системной природы, ценностного отношения к научному знанию и методам познания в науке. Изучение химии происходит с привлечением знаний из ранее изученных учебных предметов: «Окружающий мир», «Биология. 5–7 классы» и «Физика. 7 класс».

При изучении химии происходит формирование знаний основ химической науки как области современного естествознания, практической деятельности человека и как одного из компонентов мировой культуры. Задача учебного предмета состоит в формировании системы химических знаний — важнейших фактов, понятий, законов и теоретических положений, доступных обобщений мировоззренческого характера, языка науки, в приобщении к научным методам познания при изучении веществ и химических реакций, в формировании и развитии познавательных умений и их применении в учебно-познавательной и учебно-исследовательской деятельности, освоении правил безопасного обращения с веществами в повседневной жизни.

При изучении химии на уровне основного общего образования важное значение приобрели такие цели, как:

формирование интеллектуально развитой личности, готовой к самообразованию, сотрудничеству, самостоятельному принятию решений, способной адаптироваться к быстро меняющимся условиям жизни;

направленность обучения на систематическое приобщение обучающихся к самостоятельной познавательной деятельности, научным методам познания, формирующим мотивацию и развитие способностей к химии;

обеспечение условий, способствующих приобретению обучающимися опыта разнообразной деятельности, познания и самопознания, ключевых навыков (ключевых компетенций), имеющих универсальное значение для различных видов деятельности;

формирование общей функциональной и естественно-научной грамотности, в том числе умений объяснять и оценивать явления окружающего мира, используя знания и опыт, полученные при изучении химии, применять их при решении проблем в повседневной жизни и трудовой деятельности;

формирование у обучающихся гуманистических отношений, понимания ценности химических знаний для выработки экологически целесообразного

поведения в быту и трудовой деятельности в целях сохранения своего здоровья и окружающей природной среды;

развитие мотивации к обучению, способностей к самоконтролю и самовоспитанию на основе усвоения общечеловеческих ценностей, готовности к осознанному выбору профиля и направленности дальнейшего обучения.

Психолого-педагогическая характеристика

Слабовидение связано со значительным нарушением функционирования зрительной системы вследствие её поражения.

Слабовидение характеризуется, прежде всего, показателями остроты зрения лучше видящего глаза в условиях оптической коррекции от 0,05-0,4. Так же слабовидение может быть обусловлено нарушением другой базовой зрительной функции - поля зрения. Общим признаком у всех слабовидящих обучающихся выступает недоразвитие сферы чувственного познания, что приводит к определённым, изменениям в психическом и физическом развитии, трудностям становления личности, к затруднениям предметно-пространственной и социальной адаптации.

Категория слабовидящих обучающихся представляет собой чрезвычайно неоднородную группу, различающуюся по своим зрительным возможностям, детерминированным состоянием зрительных функций и характером глазной патологии. Выделяются степени слабовидения: тяжелая, средняя, слабая.

Группу слабовидения тяжелой степени составляют обучающиеся с остротой зрения, находящейся в пределах от 0,05 до 0,09 на лучше видящем глазу в условиях оптической коррекции. Наряду со значительным снижением остроты зрения, как правило, нарушен ряд других зрительных функций: поле зрения (сужение или светоощущение (повышение наличие скотом), или понижение светочувствительности), пространственная контрастная чувствительность, цветоразличение, глазодвигательные функции (в виде нистагма, значительно осложняющего процесс видения, и косоглазия) и другие. Нарушение зрительных функций значительно затрудняет формирование адекватных, точных, целостных, полных чувственных образов окружающего, снижает возможности ориентировки, как в микро, так и макропространстве, осложняет процесс зрительного восприятия, обусловливает возникновение трудностей в процессе реализации учебнопознавательной деятельности. Состояние зрительных функций у данной подгруппы обучающихся чрезвычайно неустойчивое и во многом зависит от условий, в которых осуществляется учебно-познавательная деятельность: в неблагоприятных условиях состояние зрительных функций может существенно снижаться.

Несмотря на достаточно низкую остроту зрения и нестабильность зрительных функций, ведущим в учебно-познавательной деятельности данной группы обучающихся выступает зрительный анализатор.

Определенная часть обучающихся, входящих в данную группу, в силу наличия неблагоприятных зрительных прогнозов, наряду с овладением традиционной системой письма и чтения, должна параллельно обучаться рельефноточечной системе письма и чтения.

Группу слабовидения средней степени составляют обучающиеся с остротой зрения от 0,1 до 0,2 на лучше видящем глазу в условиях оптической коррекции. При этих показателях остроты зрения имеют место искажения зрительных образов и трудности зрительного контроля при передвижении в пространстве, для большинства

обучающихся характерен монокулярный характер зрения. В данную группу входят так же обучающиеся, у которых, наряду со снижением остроты зрения, могут иметь место нарушения (отдельные или в сочетании) других зрительных функций (поля светоощущения, пространственной контрастной чувствительности, зрения, цветоразличения, глазодвигательные функции и др.). Вследствие комбинированных (органических и функциональных) поражений зрительной системы снижается их работоспособность, осложняется зрительная развитие зрительно-моторной учебно-познавательную координации, что затрудняет и ориентировочную деятельность. Разнообразие клинико-патофизиологических характеристик нарушенного зрения требует строго индивидуально-дифференцированного подхода к организации образовательного процесса слабовидящих обучающихся данной группы.

Группу слабовидения слабой степени составляют обучающиеся с остротой зрения от 0,3 до 0,4 на лучше видящем глазу в условиях оптической коррекции. Несмотря на то, что данные показатели остроты зрения позволяют обучающемуся в хороших гигиенических условиях успешно использовать зрение для построения полноценного образа объекта (предмета), воспринимаемого на близком расстоянии, данная группа обучающихся испытывает определенные трудности как в процессе восприятия окружающего мира, так и в процессе учебно-познавательной деятельности. Сочетание снижения остроты зрения с нарушениями других функций, также часто осложняется наличием вторичных зрительных осложнений в виде амблиопии (стойкое снижение центрального зрения) и/или косоглазия, что усугубляет трудности зрительного восприятия слабовидящих обучающихся. Монокулярный характер зрения, имеющий место при амблиопии, обусловливает снижение скорости и точности восприятия, полноты и точности зрительных представлений, приводит к возникновению трудностей в дифференциации направлений, неспособности глаза выделять точное местонахождение объекта в пространстве, определять степень его удаленности.

Неоднородность группы слабовидящих обучающихся детерминируется наличием у них как различных клинических форм слабовидения (нарушение рефракции, патология хрусталика, глаукома, заболевания нервно-зрительного аппарата и др.), так и таких заболеваний, как: врожденная миопия (в том числе осложненная), катаракта, гиперметропия высокой степени, ретинопатия недоношенных, частичная атрофия зрительного нерва, различные деформации органа зрения и др. Стабилизация зрительных функций может быть обеспечена за счет учета в учебно-познавательной деятельности клинических форм и зрительных диагнозов слабовидящих обучающихся.

Неоднородность группы слабовидящих также определяется возрастом, в котором произошло нарушение (или ухудшение) зрения. Значение данного фактора определяется тем, что время нарушения (ухудшения) зрения оказывает существенное влияние не только на психофизическое развитие обучающегося, но и на развитие у него компенсаторных процессов. В настоящее время в качестве лидирующих причин, вызывающих слабовидение, выступают врожденно-наследственные причины. В этой связи наблюдается преобладание слабовидящих обучающихся, у которых зрение было нарушено в раннем возрасте, что, с одной стороны, обусловливает своеобразие их психофизического развития, с другой определяет особенности развития

компенсаторных механизмов, связанных с перестройкой организма, регулируемой центральной нервной системой.

Обучающимся данной группы характерно: снижение общей и зрительной работоспособности; замедленное формирование предметно-практических действий; замедленное овладение письмом и чтением, что обусловливается нарушением взаимодействия зрительной и глазодвигательной систем, снижением координации движений, их точности, замедленным темпом формирования зрительного образа буквы, трудностями зрительного контроля; затруднение выполнения зрительных заданий, требующих согласованных движений глаз, многократных переводов взора с объекта на объект; возникновение трудностей в овладении измерительными навыками, выполнение заданий, связанных со зрительно-моторной координацией, зрительно-пространственным анализом и синтезом и др.

В условиях слабовидения наблюдается обедненность чувственного опыта, обусловленная не только снижением функций зрения и различными клиническими проявлениями, но и недостаточным развитием зрительного восприятия и психомоторных образований.

слабовидящих наблюдается снижение двигательной активности. своеобразие физического развития (нарушение координации, точности, объема движений, нарушение сочетания движений глаз, головы, тела, рук и др.), в том числе трудности формирования двигательных навыков. При слабовидении наблюдается своеобразие становления и протекания познавательных процессов, что проявляется в: снижении скорости и точности зрительного восприятия, замедленности становления зрительного образа, сокращении и ослаблении ряда свойств зрительного восприятия (объем, целостность, константность, обобщенность, избирательность и др.); снижении полноты, целостности образов, широты круга отображаемых предметов и явлений; трудностях реализации мыслительных операций, в развитии основных свойств внимания. Слабовидящим характерны затруднения: в овладении пространственными представлениями, в процессе микро- и макроориентировки, в обозначении пространственных отношений: В формировании словесном представлений о форме, величине, пространственном местоположении предметов; в возможности дистантного восприятия и развития обзорных возможностей; в темпе зрительного анализа.

Слабовидящим характерно своеобразие речевого развития, проявляющееся в некотором снижении динамики и накопления языковых средств, выразительных движений, слабой связи речи с предметным содержанием. У них наблюдаются особенности формирования речевых навыков, недостаточный запас слов, обозначающих признаки предметов и пространственные отношения; трудности вербализации зрительных впечатлений, овладения языковыми (фонематический состав, словарный запас, грамматический строй) и неязыковыми (мимика, пантомимика, интонация) средствами общения, осуществления коммуникативной деятельности (трудности восприятия, интерпретации, продуцирования средств общения).

У слабовидящих обучающихся наблюдается снижение общей познавательной активности, что затрудняет своевременное развитие различных видов деятельности, в том числе сенсорно-перцептивной, которая в условиях слабовидения проходит медленнее по сравнению с обучающимися, не имеющими ограничений по возможностям здоровья. Кроме того, слабовидящим характерны трудности,

связанные с качеством выполняемых действий, автоматизацией навыков, осуществлением зрительного контроля над выполняемыми действиями, что особенно ярко проявляется в овладении учебными умениями и навыками.

У слабовидящих отмечается снижение уровня развития мотивационный сферы, регуляторных (самоконтроль, самооценка, воля) и рефлексивных образований (начало становления «Я-концепции», развитие самоотношения). У них могут формироваться следующие негативные качества личности: недостаточная самостоятельность, безынициативность, иждивенчество.

У части обучающихся данной группы слабовидение сочетается с другими поражениями (заболеваниями) детского организма, что снижает их общую выносливость, психоэмоциональное состояние, двигательную активность, обуславливая особенности их психофизического развития.

Особые образовательные потребности

целенаправленное обогащение (коррекция) чувственного опыта за счет развития всех анализаторов и зрительного восприятия;

целенаправленное руководство зрительным восприятием;

расширение, обогащение и коррекция предметных и

пространственных представлений, формирование и расширение понятий;

целенаправленное развитие сенсорно-перцептивной деятельности;

упорядочивание и организация зрительной работы с множеством объектов восприятия;

развитие познавательной деятельности слабовидящих как основы компенсации, коррекции и профилактики нарушений имеющихся у данной группы обучающихся;

использование специальных приемов организации учебно-познавательной деятельности слабовидящих обучающихся (алгоритмизация и др.);

систематическое и целенаправленное развитие логических приемов переработки учебной информации;

обеспечение доступности учебной информации для зрительного восприятия слабовидящими обучающимися;

строгий учет в организации обучения и воспитания слабовидящего обучающегося: зрительного диагноза (основного и дополнительного), возраста и времени нарушения зрения, состояния основных зрительных функций, возможности коррекции зрения с помощью оптических средств и приборов, режима зрительной и физической нагрузок;

преимущественное использование индивидуальных пособий, выполненных с учетом степени и характера нарушенного зрения, клинической картины зрительного нарушения;

учет темпа учебной работы слабовидящих обучающихся, увеличение времени на выполнение практических работ;

введение в структурное построение урока (курса)

пропедевтических (подготовительных) этапов;

введение в содержание образования коррекционно-развивающих курсов;

постановка и реализация на общеобразовательных уроках и внеклассных мероприятиях целевых установок, направленных на коррекциюотклонений в развитии и профилактику возникновения вторичных отклонений;

активное использование в учебно-познавательном процессе речи как средства компенсации нарушенных функций, осуществление специальной работы по коррекции речевых нарушений;

целенаправленное формирование умений и навыков зрительной ориентировки в микро и макропространстве;

целенаправленное формирование умений и навыков социально-бытовой ориентировки;

создание условий для развития у слабовидящих обучающихся инициативы, познавательной и общей активности, в том числе за счет привлечения к участию в различных (доступных) видах деятельности;

развитие и коррекция коммуникативной деятельности;

физическое развития слабовидящих с учетом его своеобразия и противопоказаний при определенных заболеваниях; - коррекция нарушений в двигательной сфере;

поддержание и наращивание зрительной работоспособности слабовидящего обучающегося в образовательном процессе;

поддержание психофизического тонуса слабовидящих;

целенаправленное развитие регуляторных (самоконтроль, самооценка) и рефлексивных (самоотношение) образований;

активное обогащение (коррекция) социального опыта слабовидящего обучающегося.

Общее число часов, отведённых для изучения химии на уровне основного общего образования, составляет 136 часов: в 8 классе – 68 часов (2 часа в неделю), в 9 классе – 68 часов (2 часа в неделю). В соответствии с индивидуальным учебным планом рабочая программа рассчитана на 34 учебные недели и составляет 34 часа (1 час в неделю).

Для каждого класса предусмотрено резервное учебное время, которое может быть использовано участниками образовательного процесса в целях формирования вариативной составляющей образовательного процесса и распределяется учителем в рамках календарно-тематического планирования. При этом обязательная (инвариантная) часть содержания предмета, установленная рабочей программой, и время, отводимое на её изучение, должны быть сохранены полностью.

Воспитательный потенциал предмета «Химия»

Воспитательный потенциал предмета «Химия» в соответствии с Программой воспитания реализуется через:

привлечение внимания обучающихся к ценностному аспекту изучаемых на уроках явлений, организацию их работы с получаемой на уроке социально значимой информацией – инициирование ее обсуждения, высказывания обучающимися своего мнения по ее поводу, выработки своего к ней отношения;

демонстрацию обучающимся примеров ответственного, гражданского поведения, проявления человеколюбия и добросердечности, через подбор соответствующих текстов для чтения, задач для решения, проблемных ситуаций для обсуждения в классе;

применение на уроках интерактивных форм работы с обучающимися: интеллектуальных игр, стимулирующих познавательную мотивацию обучающихся; дидактического театра, где полученные на уроке знания обыгрываются в театральных постановках; дискуссий, которые дают обучающимся возможность

приобрести опыт ведения конструктивного диалога; групповой работы или работы в парах, которые учат обучающихся командной работе и взаимодействию с другими обучающимися;

инициирование и поддержку исследовательской деятельности обучающихся в рамках реализации ими индивидуальных и групповых исследовательских проектов, что даст обучающимся возможность приобрести навык самостоятельного решения теоретической проблемы, навык генерирования и оформления собственных идей, навык уважительного отношения к чужим идеям, оформленным в работах других исследователей, навык публичного выступления перед аудиторией, аргументирования и отстаивания своей точки зрения.

II. СОДЕРЖАНИЕ ОБУЧЕНИЯ

8 КЛАСС

Первоначальные химические понятия

Предмет химии. Роль химии в жизни человека. Химия в системе наук. Тела и вещества. Физические свойства веществ. Агрегатное состояние веществ. Понятие о методах познания в химии. Чистые вещества и смеси. Способы разделения смесей.

Атомы и молекулы. Химические элементы. Символы химических элементов. Простые и сложные вещества. Атомно-молекулярное учение.

Химическая формула. Валентность атомов химических элементов. Закон постоянства состава веществ. Относительная атомная масса. Относительная молекулярная масса. Массовая доля химического элемента в соединении.

Количество вещества. Моль. Молярная масса. Взаимосвязь количества, массы и числа структурных единиц вещества. Расчёты по формулам химических соединений.

Физические и химические явления. Химическая реакция и её признаки. Закон сохранения массы веществ. Химические уравнения. Классификация химических реакций (соединения, разложения, замещения, обмена).

Химический эксперимент:

знакомство с химической посудой, правилами работы в лаборатории и приёмами обращения с лабораторным оборудованием, изучение и описание физических свойств образцов неорганических веществ, наблюдение физических (плавление воска, таяние льда, растирание сахара в ступке, кипение и конденсация химических (горение свечи, прокаливание медной взаимодействие мела с кислотой) явлений, наблюдение и описание признаков протекания химических реакций (разложение сахара, взаимодействие серной кислоты с хлоридом бария, разложение гидроксида меди (II) при нагревании, взаимодействие железа с раствором соли меди (II), изучение способов разделения смесей: помошью магнита, фильтрование, выпаривание, хроматография, проведение очистки поваренной соли, наблюдение и описание результатов проведения опыта, иллюстрирующего закон сохранения массы, создание моделей молекул (шаростержневых).

Важнейшие представители неорганических веществ

Воздух – смесь газов. Состав воздуха. Кислород – элемент и простое вещество. Нахождение кислорода в природе, физические и химические свойства (реакции горения). Оксиды. Применение кислорода. Способы получения кислорода в

лаборатории и промышленности. Круговорот кислорода в природе. Озон – аллотропная модификация кислорода.

Тепловой эффект химической реакции, термохимические уравнения, экзо- и эндотермические реакции. Топливо: уголь и метан. Загрязнение воздуха, усиление парникового эффекта, разрушение озонового слоя.

Водород – элемент и простое вещество. Нахождение водорода в природе, физические и химические свойства, применение, способы получения. Кислоты и соли.

Молярный объём газов. Расчёты по химическим уравнениям.

Физические свойства воды. Вода как растворитель. Растворы. Насыщенные и ненасыщенные растворы. Растворимость веществ в воде. Массовая доля вещества в растворе. Химические свойства воды. Основания. Роль растворов в природе и в жизни человека. Круговорот воды в природе. Загрязнение природных вод. Охрана и очистка природных вод.

Классификация неорганических соединений. Оксиды. Классификация оксидов: солеобразующие (основные, кислотные, амфотерные) и несолеобразующие. Номенклатура оксидов. Физические и химические свойства оксидов. Получение оксидов.

Основания. Классификация оснований: щёлочи и нерастворимые основания. Номенклатура оснований. Физические и химические свойства оснований. Получение оснований.

Кислоты. Классификация кислот. Номенклатура кислот. Физические и химические свойства кислот. Ряд активности металлов Н. Н. Бекетова. Получение кислот.

Соли. Номенклатура солей. Физические и химические свойства солей. Получение солей.

Генетическая связь между классами неорганических соединений.

Химический эксперимент:

качественное определение содержания кислорода в воздухе, получение, распознавание и изучение свойств кислорода, наблюдение взаимодействия веществ с кислородом и условия возникновения и прекращения горения (пожара), ознакомление с образцами оксидов и описание их свойств, получение, собирание, распознавание и изучение свойств водорода (горение), взаимодействие водорода с оксидом меди (II) (возможно использование видеоматериалов), наблюдение образцов веществ количеством 1 моль, исследование особенностей растворения веществ с различной растворимостью, приготовление растворов с определённой массовой долей растворённого вещества, взаимодействие воды с металлами (натрием и кальцием) (возможно использование видеоматериалов), исследование образцов неорганических веществ различных классов, наблюдение изменения окраски индикаторов в растворах кислот и щелочей, изучение взаимодействия оксида меди (II) с раствором серной кислоты, кислот с металлами, реакций нейтрализации, получение нерастворимых оснований, вытеснение одного металла другим из раствора соли, решение экспериментальных задач по теме «Важнейшие классы неорганических соединений».

Периодический закон и Периодическая система химических элементов Д. И. Менделеева. Строение атомов. Химическая связь. Окислительно-восстановительные реакции

Первые попытки классификации химических элементов. Понятие о группах сходных элементов (щелочные и щелочноземельные металлы, галогены, инертные газы). Элементы, которые образуют амфотерные оксиды и гидроксиды.

Периодический закон. Периодическая система химических элементов Д. И. Менделеева. Короткопериодная и длиннопериодная формы Периодической системы химических элементов Д. И. Менделеева. Периоды и группы. Физический смысл порядкового номера, номеров периода и группы элемента.

Строение атомов. Состав атомных ядер.

Изотопы. Электроны.

Строение электронных оболочек атомов первых 20 химических элементов Периодической системы Д. И. Менделеева. Характеристика химического элемента по его положению в Периодической системе Д. И. Менделеева.

Закономерности изменения радиуса атомов химических элементов, металлических и неметаллических свойств по группам и периодам.

Значение Периодического закона и Периодической системы химических элементов для развития науки и практики. Д. И. Менделеев – учёный и гражданин.

Химическая связь. Ковалентная (полярная и неполярная) связь Электроотрицательность химических элементов. Ионная связь.

Степень окисления. Окислительно -восстановительные реакции.

Процессы окисления и восстановления. Окислители и восстановители.

Химический эксперимент:

изучение образцов веществ металлов и неметаллов, взаимодействие гидроксида цинка с растворами кислот и щелочей, проведение опытов, иллюстрирующих примеры окислительно-восстановительных реакций (горение, реакции разложения, соединения).

Межпредметные связи

Реализация межпредметных связей при изучении химии в 8 классе осуществляется через использование как общих естественно- научных понятий, так и понятий, являющихся системными для отдельных предметов естественно - научного цикла.

Общие естественно- научные понятия: научный факт, гипотеза, теория, закон, анализ, синтез, классификация, периодичность, наблюдение, эксперимент, моделирование, измерение, модель, явление.

Физика: материя, атом, электрон, протон, нейтрон, ион, нуклид, изотопы, радиоактивность, молекула, электрический заряд, вещество, тело, объём, агрегатное состояние вещества, газ, физические величины, единицы измерения, космос, планеты, звёзды, Солнце.

Биология: фотосинтез, дыхание, биосфера.

География: атмосфера, гидросфера, минералы, горные породы, полезные ископаемые, топливо, водные ресурсы.

III. ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ ОСВОЕНИЯ ПРОГРАММЫ ПО ХИМИИ НА УРОВНЕ ОСНОВНОГО ОБЩЕГО ОБРАЗОВАНИЯ

ЛИЧНОСТНЫЕ РЕЗУЛЬТАТЫ

Личностные результаты освоения программы основного общего образования достигаются в ходе обучения химии в единстве учебной и воспитательной деятельности в соответствии с традиционными российскими социокультурными и духовно-нравственными ценностями, принятыми в обществе правилами и нормами поведения и способствуют процессам самопознания, саморазвития и социализации обучающихся.

Личностные результаты отражают готовность обучающихся руководствоваться системой позитивных ценностных ориентаций и расширение опыта деятельности на её основе, в том числе в части:

1) патриотического воспитания:

ценностного отношения к отечественному культурному, историческому и научному наследию, понимания значения химической науки в жизни современного общества, способности владеть достоверной информацией о передовых достижениях и открытиях мировой и отечественной химии, заинтересованности в научных знаниях об устройстве мира и общества; 2) гражданского воспитания:

представления о социальных нормах и правилах межличностных отношений в коллективе, коммуникативной компетентности в общественно полезной, учебно исследовательской, творческой и других видах деятельности, готовности к разнообразной совместной деятельности при выполнении учебных, познавательных задач, выполнении химических экспериментов, создании учебных проектов, стремления к взаимопониманию и взаимопомощи в процессе этой учебной деятельности, готовности оценивать своё поведение и поступки своих товарищей с позиции нравственных и правовых норм с учётом осознания последствий поступков;

ценности научного познания:

мировоззренческие представления о веществе и химической реакции, соответствующие современному уровню развития науки и составляющие основу для понимания сущности научной картины мира, представления об основных закономерностях развития природы, взаимосвязях человека с природной средой, о роли химии в познании этих закономерностей; познавательные мотивы, направленные на получение новых знаний по химии, необходимые для объяснения наблюдаемых процессов и явлений, познавательной, информационной и читательской культуры, в том числе навыков самостоятельной работы с учебными текстами, справочной литературой, доступными техническими средствами информационных технологий; интерес к обучению и познанию, любознательность, готовность и способность к самообразованию, проектной и исследовательской деятельности, к осознанному выбору направленности и уровня обучения в дальнейшем;

формирования культуры здоровья:

осознание ценности жизни, ответственного отношения к своему здоровью, установки на здоровый образ жизни, осознание последствий и неприятие вредных привычек (употребления алкоголя, наркотиков, курения), необходимости соблюдения правил безопасности при обращении с химическими веществами в быту и реальной жизни; 5) трудового воспитания:

интерес к практическому изучению профессий и труда различного рода, уважение к труду и результатам трудовой деятельности, в том числе на основе применения предметных знаний по химии, осознанный выбор индивидуальной траектории продолжения образования с учётом личностных интересов и способности

к химии, общественных интересов и потребностей, успешной профессиональной деятельности и развития необходимых умений, готовность адаптироваться в профессиональной среде;

6) экологического воспитания:

экологически целесообразное отношение к природе как источнику жизни на Земле, основе её существования, понимание ценности здорового и безопасного образа жизни, ответственное отношение к собственному физическому и психическому здоровью, осознание ценности соблюдения правил безопасного поведения при работе с веществами, а также в ситуациях, угрожающих здоровью и жизни людей; способности применять знания, получаемые при изучении химии, для решения задач, связанных с окружающей природной средой, для повышения уровня экологической культуры, осознания глобального характера экологических проблем и путей их решения посредством методов химии, экологического мышления, умения руководствоваться им в познавательной, коммуникативной и социальной практике.

МЕТАПРЕДМЕТНЫЕ РЕЗУЛЬТАТЫ

метапредметных результатов выделяют формирования мировоззрения общенаучные понятия (закон, теория, принцип, гипотеза, факт, система, процесс, эксперимент и другое.), которые используются в естественно-научных учебных предметах и позволяют на основе знаний из этих предметов формировать представление о целостной научной картине мира, и универсальные учебные действия (познавательные, коммуникативные, регулятивные), которые обеспечивают формирование готовности самостоятельному планированию и осуществлению учебной деятельности.

Познавательные универсальные учебные действия Базовые логические действия:

умения использовать приёмы логического мышления при освоении

знаний: раскрывать смысл химических понятий (выделять их характерные признаки, устанавливать взаимосвязь с другими понятиями), использовать понятия для объяснения отдельных фактов и явлений, выбирать основания и критерии для классификации химических веществ и химических реакций, устанавливать причинно-следственные связи между объектами изучения, строить логические рассуждения (индуктивные, дедуктивные, по аналогии), делать выводы и заключения; умение применять в процессе познания понятия (предметные и метапредметные), символические (знаковые) модели, используемые в химии, преобразовывать широко применяемые в химии модельные представления — химический знак (символ элемента), химическая формула и уравнение химической реакции — при решении учебно-познавательных задач, с учётом этих модельных представлений выявлять и характеризовать существенные признаки изучаемых объектов — химических веществ и химических реакций, выявлять общие закономерности, причинно-следственные связи и противоречия в изучаемых процессах и явлениях.

Базовые исследовательские действия:

умение использовать поставленные вопросы в качестве инструмента

познания, а также в качестве основы для формирования гипотезы по проверке правильности высказываемых суждений; приобретение опыта по планированию, организации и проведению ученических экспериментов, умение наблюдать за ходом процесса, самостоятельно прогнозировать его результат, формулировать обобщения

и выводы по результатам проведённого опыта, исследования, составлять отчёт о проделанной работе. Работа с информацией:

умение выбирать, анализировать и интерпретировать информацию различных видов и форм представления, получаемую из разных источников (научно-популярная литература химического содержания, справочные пособия, ресурсы Интернета), критически оценивать противоречивую и недостоверную информацию; умение применять различные методы и запросы при поиске и отборе информации и соответствующих данных, необходимых для выполнения учебных и познавательных задач определённого типа, приобретение опыта в области использования информационно-коммуникативных технологий, овладение культурой активного использования различных поисковых систем, самостоятельно оптимальную форму представления информации и иллюстрировать решаемые задачи несложными схемами, диаграммами, другими формами графики и их комбинациями; умение использовать и анализировать в процессе учебной и исследовательской деятельности информацию о влиянии промышленности, сельского хозяйства и транспорта на состояние окружающей природной среды.

Коммуникативные универсальные учебные действия:

умения задавать вопросы (в ходе диалога и (или) дискуссии) по существу обсуждаемой темы, формулировать свои предложения относительно выполнения предложенной задачи; умения представлять полученные результаты познавательной деятельности в устных и письменных текстах; делать презентацию результатов выполнения химического эксперимента (лабораторного опыта, лабораторной работы по исследованию свойств веществ, учебного проекта);

умения учебного сотрудничества со сверстниками в совместной познавательной и исследовательской деятельности при решении возникающих проблем на основе учёта общих интересов и согласования позиций (обсуждения, обмен мнениями, «мозговые штурмы», координация совместных действий, определение критериев по оценке качества выполненной работы и другие).

Регулятивные универсальные учебные действия:

умение самостоятельно определять цели деятельности, планировать, осуществлять, контролировать и при необходимости корректировать свою деятельность, выбирать наиболее эффективные способы решения учебных и познавательных задач, самостоятельно составлять или корректировать предложенный алгоритм действий при выполнении заданий с учётом получения новых знаний об изучаемых объектах — веществах и реакциях, оценивать соответствие полученного результата заявленной цели, умение использовать и анализировать контексты, предлагаемые в условии заданий.

ПРЕДМЕТНЫЕ РЕЗУЛЬТАТЫ

В составе предметных результатов по освоению обязательного содержания, установленного данной федеральной рабочей программой, выделяют: освоенные обучающимися научные знания, умения и способы действий, специфические для предметной области «Химия», виды деятельности по получению нового знания, его интерпретации, преобразованию и применению в различных учебных и новых ситуациях.

К концу обучения в **8 классе** предметные результаты на базовом уровне должны отражать сформированность у обучающихся умений:

раскрывать смысл основных химических понятий: атом, молекула, химический элемент, простое вещество, сложное вещество, смесь (однородная и неоднородная), валентность, относительная атомная и молекулярная масса, количество вещества, моль, молярная масса, массовая доля химического элемента в соединении, молярный объём, оксид, кислота, основание, электроотрицательность, степень окисления, химическая реакция, классификация реакций: реакции соединения, реакции разложения, реакции замещения, реакции обмена, экзо- и эндотермические реакции, тепловой эффект реакции, ядро атома, электронный слой атома, атомная орбиталь, радиус атома, химическая связь, полярная и неполярная ковалентная связь, ионная связь, ион, катион, анион, раствор, массовая доля вещества (процентная концентрация) в растворе;

иллюстрировать взаимосвязь основных химических понятий и применять эти понятия при описании веществ и их превращений;

использовать химическую символику для составления формул веществ и уравнений химических реакций;

определять валентность атомов элементов в бинарных соединениях, степень окисления элементов в бинарных соединениях, принадлежность веществ к определённому классу соединений по формулам, вид химической связи (ковалентная и ионная) в неорганических соединениях;

раскрывать смысл Периодического закона Д. И. Менделеева: демонстрировать понимание периодической зависимости свойств химических элементов от их положения в Периодической системе, законов сохранения массы веществ, постоянства состава, атомно -молекулярного учения, закона Авогадро;

описывать и характеризовать табличную форму Периодической системы химических элементов: различать понятия «главная подгруппа (А-группа)» и «побочная подгруппа (Б-группа)», малые и большие периоды, соотносить обозначения, которые имеются в таблице «Периодическая система химических элементов Д. И. Менделеева» с числовыми характеристиками строения атомов химических элементов (состав и заряд ядра, общее число электронов и распределение их по электронным слоям);

классифицировать химические элементы, неорганические вещества, химические реакции (по числу и составу участвующих в реакции веществ, по тепловому эффекту);

характеризовать (описывать) общие химические свойства веществ различных классов, подтверждая описание примерами молекулярных уравнений соответствующих химических реакций;

прогнозировать свойства веществ в зависимости от их качественного состава, возможности протекания химических превращений в различных условиях;

вычислять относительную молекулярную и молярную массы веществ, массовую долю химического элемента по формуле соединения, массовую долю вещества в растворе, проводить расчёты по уравнению химической реакции;

применять основные операции мыслительной деятельности – анализ и синтез, сравнение, обобщение, систематизацию, классификацию, выявление причинно-следственных связей — для изучения свойств веществ и химических реакций, естественно-научные методы познания — наблюдение, измерение, моделирование, эксперимент (реальный и мысленный);

следовать правилам пользования химической посудой и лабораторным оборудованием, а также правилам обращения с веществами в соответствии с инструкциями по выполнению лабораторных химических опытов по получению и собиранию газообразных веществ (водорода и кислорода), приготовлению растворов с определённой массовой долей растворённого вещества, планировать и проводить химические эксперименты по распознаванию растворов щелочей и кислот с помощью индикаторов (лакмус, фенолфталеин, метилоранж и другие).

Коррекционно-развивающая работе на уроке, направленная на реализацию особых образовательных потребностей учащихся с ЗПР: строить обучение с учётом индивидуальных особенностей учащихся с ЗПР и специфики усвоения ими знаний, умений и навыков, которое предполагает:

"пошаговое» предъявление материала, от частного к общему; дозированная помощь взрослого; использование специальных методов, приемов и средств в соответствии с рекомендациями специалистов ПДСПК, способствующих как общему развитию обучающегося, так и компенсации индивидуальных недостатков развития (специальные упражнения для развития ВПФ, использование повышения ИКТкомпетентности учащихся как средства компенсации нарушенных функций — от ориентации на клавиатуре до ориентации в ИОС школы и образовательных ресурсах интернет); разработку хорошо структурированного материала, содержащего опоры с детализацией в форме алгоритмов, образцов выполнения заданий для конкретизации действий при самостоятельной работе; тщательный отбор и комбинирование методов и приёмов обучения с целью смены видов деятельности детей, изменения в ней доминантного анализатора, включения в работу большинства анализаторов; постоянно стимулировать познавательную активность, побуждать интерес к себе, окружающему предметному и социальному миру (задания проблемно-поискового характера, создание ситуации успеха, викторины и конкурсы и т. п.); использовать специальные приёмы и упражнения (в соответствии с рекомендациями педагогапсихолога) по формированию произвольности регуляции деятельности и поведения, эмоционального фона; стимулировать стбилизации его коммуникативную активность и закреплять речевые навыки (в том числе по письму и чтению), выработанные на занятиях с учтителем-логопедом (дефектологом) в соответствии с его рекомендациями; использовать специальные упражнения для развития ориентировки пространстве, координации движений, речедвигательной координации и мелкой моторики: кинезиологические, логоритмические,

специальной направленности физминутки и паузы и др.; создавать атмосферу доброжелательности на уроке с целью предупреждения негативного отношения обучающегося к

ситуации школьного обучения в целом, формирования учебной мотивации.

Виды деятельности:

Ученику/ученикам доступны все виды учебной деятельности, но предпочтительными являются следующие:

- устный ответ,
- составление/заполнение таблицы, подбор/поиск примеров, поисковая работа.

Формы контроля

Предполагается осуществление промежуточного контроля в разных формах:

- опрос
 устный ответ
 письменный ответ
 тестирование
 самостоятельная работа
 проектная работа

IV. ТЕМАТИЧЕСКОЕ ПЛАНИРОВАНИЕ

8 КЛАСС

No	Наименование	Колич	ество часов	Электронные	
п/п	разделов и тем программы	Всего	Контрольные работы	Практические работы	(цифровые) образовательные ресурсы
Разд	ел 1. Первоначальные хи	мические пон	ятия		
1.1	Химия — важная область естествознания и практической деятельности человека	5		2	Библиотека ЦОК <u>https://m.edsoo.ru/7f41837c</u>
1.2	Вещества и химические реакции	15	1		Библиотека ЦОК https://m.edsoo.ru/7f41837c
Итог	го по разделу	20			
Разд	ел 2. Важнейшие предста	вители неорга	анических веществ		
2.1	Воздух. Кислород. Понятие об оксидах	6			Библиотека ЦОК <u>https://m.edsoo.ru/7f41837c</u>
2.2	Водород.Понятие о кислотах и солях	8		1	Библиотека ЦОК https://m.edsoo.ru/7f41837c

2.3	Вода. Растворы. Понятие об основаниях	5	1	1	Библиотека ЦОК <u>https://m.edsoo.ru/7f41837c</u>
2.4	Основные классы неорганических соединений	11	1	1	Библиотека ЦОК <u>https://m.edsoo.ru/7f41837c</u>
Итог	Итого по разделу				

	цел 3. Периодический закон ая связь. Окислительно-во	-		ических элементов Д. I	I. Менделеева. Строение атомов
3.1	Периодический закон и Периодическая система химических элементов Д. И. Менделе ева. Строение атома	7			Библиотека ЦОК https://m.edsoo.ru/7f41837
3.2	Химическая связь. Окислительно-восстано вительные реакции	8	1		Библиотека ЦОК https://m.edsoo.ru/7f41837
Ито	го по разделу	15			Библиотека ЦОК https://m.edsoo.ru/7f41837
Резервное время		3			Библиотека ЦОК https://m.edsoo.ru/7f41837

Г

		1	•	
ОБЩЕЕ КОЛИЧЕСТВО ЧАСОВ ПО ПРОГРАММЕ	68	4	5	

Поурочное планирование по Химии, 8 «А» класс, Учитель Сарабашян Л.А.

NC-	Учитель Сарабашян Л.А. Тема урока Количество часов Дата по						
№ п/п	Тема урока	ROM TECTBO TACOB			Дата по плану		
		Всего	Контр. работы	Практ. работы			
1	Основные положения молекулярно- кинетической теории и их опытные подтверждения	1			3.09		
2	Масса и размер атомов и молекул	1			11.09		
3	Модели твёрдого, жидкого и газообразного состояний вещества.	1			17.09		
4	Объяснение свойств твёрдого, жидкого и газообразного состояний вещества на основе положений молекулярно-кинетической теории	1			24.09		
5	Кристаллические и аморфные тела	1			1.09		
6	Смачивание и капиллярность. Поверхностное натяжение	1			8.10		
7	Тепловое расширение и сжатие	1			15.10		
8	Температура. Связь температуры со скоростью теплового движения частиц	1			22.10		
9	Внутренняя энергия. Способы изменения внутренней энергии	1			5.11		
10	Виды теплопередачи	1			12.11		
11	Урок-конференция "Практическое использование тепловых свойств веществ и материалов в целях энергосбережения"	1			19.11		
12	Количество теплоты. Удельная теплоемкость	1			26.11		
13	Уравнение теплового баланса. Теплообмен и тепловое равновесие	1			3.12		
14	Лабораторная работа "Исследование явления теплообмена при смешивании холодной и горячей воды"	1		1	10.12		
15	Расчет количества теплоты, необходимого для нагревания тела и выделяемого им при охлаждении	1			17.12		

1.6	Поборожовую воборо "О	1	4	24.12
16	Лабораторная работа "Определение	1	1	24.12
17	удельной теплоемкости вещества"	1		14.01
17	Энергия топлива. Удельная теплота	1		14.01
10	сгорания	1		21.01
18	Плавление и отвердевание	1		21.01
	кристаллических тел. Удельная			
10	теплота плавления	1	1	20.01
19	Лабораторная работа "Определение	1	1	28.01
20	удельной теплоты плавления льда"			0.4.02
20	Парообразование и конденсация.	1		04.02
	Испарение			11.00
21	Кипение. Удельная теплота	1		11.02
	парообразования и конденсации.			
	Зависимость температуры кипения от			
	атмосферного давления			
22	Влажность воздуха. Лабораторная	1	1	18.02
	работа "Определение относительной			
	влажности воздуха"			
23	Решение задач на определение	1		25.02
	влажности воздуха			
24	Принципы работы тепловых	1		4.03
	двигателей. Паровая турбина.			
	Двигатель внутреннего сгорания			
25	КПД теплового двигателя. Тепловые	1		11.03
	двигатели и защита окружающей			
	среды			
26	Закон сохранения и превращения	1		18.03
	энергии в тепловых процессах			
27	Электризация тел. Два рода	1		25.03
	электрических зарядов			
28	Урок-исследование "Электризация тел	1		08.04
	индукцией и при соприкосновении"			
29	Взаимодействие заряженных тел.	1		15.04
	Закон Кулона			
30	Электрическое поле. Напряженность	1		22.04
	электрического поля. Принцип			
	суперпозиции электрических полей			
31	Носители электрических зарядов.	1		29.04
	Элементарный заряд. Строение атома			
32	Проводники и диэлектрики. Закон	1		06.05
	сохранения электрического заряда			
33	Электрический ток, условия его	1		13.05
	существования. Источники			
	электрического тока			
	. <u> </u>	ı		1

34	Действия электрического тока	1			20.05
ОБЩЕЕ КОЛИЧЕСТВО ЧАСОВ ПО		34	0	4	
ПРОГ	ПРОГРАММЕ				